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Linear Prediction, Maximum Flatness, Maximum
Entropy, and AR Polyspectral Estimation

Chong-Yung Chi, Senior Member, IEEE

Abstract—1t is well known in second-order statistics based
autoregressive (AR) spectral estimation that the linear predic-
tion spectral estimator is equivalent to the maximum entropy
spectral estimator and they are also equivalent to the maximum
spectral flatness spectral estimator for AR processes of known
order. In this paper, we present a new theoretical background
for the polyspectral estimation and modeling of non-Gaussian
AR processes which includes a new higher order statistics (HOS)
based linear prediction error filter and associated linear pre-
diction polyspectral estimator, a maximum polyspectral flat-
ness polyspectral estimator, a maximum higher order entropy
polyspectral estimator, as well as the equivalencies among these
polyspectral estimators.

I. INTRODUCTION

ARAMETRIC spectral estimation of a wide-sense
stationary process [6]-[10] can be found in various
science and engineering areas such a speech processing,
seismology, radar, sonar, radio astronomy, biomedicine,
image processing, vibration analysis, and oceanography.
The autoregressive (AR) spectral estimator is the most
popular because estimates of the AR parameters can be
found by solving a set of linear equations, the so-called
Yule-Walker equations. When the AR modeling assump-
tion is valid, spectral estimators are obtained which are
less biased and have a lower variability than conventional
Fourier based spectral estimators [9]-[13]. Furthermore,
the AR spectral estimator is supported by the well-known
fact that the AR spectral estimator is equivalent to the
linear prediction spectral estimator as well as the maxi-
mum entropy spectral estimator [1]-[4] and they are also
equivalent to the maximum spectral flatness spectral es-
timator [5], [6] as the order of AR processes is known a
priori. However, all power spectral estimators are based
on second-order statistics (power spectra or correlation
functions) and thus are phase blind whether the process is
Gaussian or not. Obviously, if the signal phase is needed,
the performance degradation to any correlation based sig-
nal processing methods is inevitable.
Recently, higher order statistics (HOS) based identifi-
cation of nonminimum-phase linear time-invariant sys-
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tems with only non-Gaussian output measurements has
drawn extensive attention in the aforementioned areas of
science and engineering. These statistics, known as cu-
mulants, and their associated Fourier transforms, known
as polyspectra, not only extract the amplitude information
but also phase information, whereas cumulants are totally
zero if the process of interest is Gaussian. In the real
world, measurements are very often non-Gaussian ran-
dom signals, such as voiced speech signals, binary se-
quences in digital communications, and seismograms,
while noise is very often Gaussian. Hence, cumulant
based signal processing methods are naturally immune
from Gaussian noise whether the noise is white or colored
with either known or unknown statistics. On the other
hand, correlation based signal processing methods are
neither phase-sensitive nor immune from Gaussian noise.
These facts recently prompted rapid research in signal
processing with HOS.

As in parametric spectral estimation, parametric poly-
spectral estimation is also based on the assumption that
the given non-Gaussian linear process is an AR, a moving
average (MA), or an autoregressive moving average
(ARMA) process. Thus parametric polyspectral estima-
tion and system identification with only output measure-
ments are basically the same problem for estimating the
unknown parameters from available finite data. Giannakis
and Mendel [20], Giannakis [21], and Swami and Mendel
[22], [25] estimate the unknown parameters basically by
fitting a set of linear equations with sample cumulants in
least squares sense. There are many other methods, such
as closed-form solution based recursive methods [19],
[20], bicepstral methods reported in Pan and Nikias [27],
Lii and Rosenblatt’s exhaustive search method [29], Tug-
nait’s cumulant matching methods [31], [32] and Fried-
lander and Porat’s optimization method [33]. References
[17] and [18] provide the reader with a nice tutorial re-
view of HOS in signal processing and system theory.
Among the existing cumulant based AR parameter esti-
mators, many of them, such as [20]-[25], [30], are de-
veloped based on fitting a set of linear equations associ-
ated with (7) (to be discussed later) by the least squares
method without resort to the minimization of a cost func-
tion of the prediction error, which is the backbone of AR
power spectral estimators. To the author’s knowledge, this
is because a well-defined prediction error filter based on
HOS has never been reported in the open literature. Nat-
urally, it is not yet known whether all the previously men-
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tioned equivalencies among AR power spectral estimators
imply the corresponding equivalencies among AR poly-
spectral estimators. This motivated the study presented in
this paper.

In Section II, we briefly review the background of non-
Gaussian AR processes for ease of later use. Then we
present a new prediction error filter based on the HOS of
stationary non-Gaussian linear processes in Section III.
Sections IV and V discuss polyspectral estimation based
on the measure of polyspectral flatness and that based on
the maximum higher order entropy criterion, repectively.
Finally, we provide a discussion and draw some conclu-
sions.

II. NoN-GAUSSIAN AR PROCESSES

Assume that x (k) is the output of a casual autoregres-
sive (AR) model of order p as follows:

P
x(k) = — ;. a(xk — i) + u(k) (1)

where u(k) is a real, zero-mean, independent identically
distributed (i.i.d.) non-Gaussian process. The transfer
function 1/A4(z), where

id . d :
4@ = Labz' =1+ 2 a®z” @)

and a(0) = 1, is assumed to be minimum phase (with all
zeros inside the unit circle) for x (k) to be stationary. The
Mth-order cumulant cum(x;, X, * - , Xp) of random
variables x,, X, * * * , X is defined in [17], [18] as the
coefficient of (v, - vy - * = vy in the Taylor series ex-
pansion of the cumulant generating function

K(@) = In E{exp (v'x)} )

where v = (v), v, ** ", V)’ and x = (x1, X5, * ",
xy)". It is well known that the Mth-order cumulant func-
tion, denoted Cy . (k;, ka, = -, kp—y), Of the stationary
x (k) can be expressed by [17], [18]

CM,x(kh ky, © ky-1)
= cum (x(k), x(k + k), x(k + ky—1))

= yw 2 hWhGk + k) - e+ k1) @)

where v, is the Mth-order cumulant of u(k) and h(k) is
the impulse response of the AR system. Note that h(0) =
1 and i (k) = O for k < O since the AR system is casual.
The Mth-order polyspectrum, denoted Sy . (fi, foo *° " »
fru—1)» of x(k), which is the (M — 1)-dimensional Fourier
transform of Cy . (ky, ky, = -+, k1), is given by [171,
[18].

o

IR

® kMm-—-1=—0o

Su(fi, oo "0 s -0 =

ki

1 1

CM,x(kl ’ /kZ’ :
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where A(f) = Az = ¢’>™). A well-known linear equa-
tion relating Mth-order cumulant function Cu.x(ky, Ky,
-+, ky_) to AR coefficients can be obtained from (5)

as follows.
Observe from (5) that

S[\fl.x(flv tt 9fMAl)A(fI + e
j— l o e w l
() A

It can be easily shown, by taking inverse (M — 1)-dimen-
sional Fourier transform of both sides of (6), that

+ fu-v)

(6)

P
2 a)Cueli = ks v o i = ki)

yu h(—ky) h(=ky) - -~ h(—kp-1)

_ YMs
0,

Let Ry, denote the finite domain of support associated
with the Mth-order cumulant function of any non-Gauss-
ian MA process of order p. For instance, for M = 3, the
finite region R; , is well known to be the point set

Ry, = {ki. k)| k| = p, ko] = p, 1kt = ko| < P}

which is symmetric with respect to the origin. If (k;, k;)
€R; ,where 0 < k; < k, < p, then the associated points
(kZ’ kl)v (—kl’ k2 - kl)’ (kl - kl’ _k1)7 (kl - st _k2)7
and (—k,, k; — k») belong to Ry, and all the values of
Cs (k| k) at these points are the same due to the inherent
symmetry properties of Cs_,(ki, k). Given Cy.x(ky, k2,
cev L kyoy) for (ky, ky, cc 0, k1) € Ry p, ONE can
obtain Cy  (ky, ko, =, kpy-1) for any other (k, ks,
-+, ky_1) Ry, from these known samples either by
(7) or by the inherent symmetry properties of Cy . (ky, k2,
-+« ky—y). Remark that for M = 2, (7) reduces to the
well-known Yule-Walker equations as follows:

k1=k2:"':kM—x:0

M

for any k; > 0

$ 2l i - & o, k=0 ®
i:Oa(l) F 2 ) = 0’ k > O

where o2 is the variance of u (k) and r,, (k) is the autocor-
relation function of x (k). Moreover, R, , reduces to {-p,
—p + 1, - -+, p}. Itis well known [6], [10] that given
{ru(k), k € Ry p}, 1 (k) for any other k ¢ R, , can be
computed from these known samples either by (8) or by
the symmetry property re (k) = Fec (—K).

Surely, one can uniquely solve for a (i) using a set of
linearly independent equations associated with (7). How

v k) exp {—j2w ik + - + fu—1ky 11}

1
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to select those ‘‘linearly independent’’ equations has been
addressed by such as Giannakis [21}, Swami and Mendel
[22], and Tugnait [30]. Swami and Mendel, as well as
Giannakis, have shown that a (i) can be determined when
p + 1 slices of Mth-order cumulants are used. To guar-
antee the identifiability of a (i), many more than p linear
equations associated with (7) using cumulant samples
taken from p + 1 cumulant slices are suggested by them.
Unfortunately, the cumulant samples needed by them are
not fully taken from the finite region R, , in spite of the
fact that for M = 2, one can uniquely solve for a (i) using
the previous Yule-Walker equations which only need cor-
relation samples within R, ,. In other words, whether it is
possible to uniquely determine a (i) with only cumulant
samples within Ry, , is still an open question.

The AR polyspectral estimator provides the polyspec-
tral estimate by substituting the estimates A (z) and 4, ob-
tained somehow from available finite data into (5). How
to accurately and efficiently estimate A(z) and 4, from
finite data is the common goal of all AR polyspectral es-
timators. Next, let us present the new HOS based predic-
tion error filter.

HI. PrebicTioN ERROR FILTER BASED oN HOS

To reduce confusion, x (k) will now denote the given
real stationary non-Gaussian linear process, otherwise, we
will clearly mention that x (k) refers to (1). Let A(z) be
the transfer function of the linear prediction error filter of
order p with a(0) = 1 and the input x(k). The output,
denoted e (k), of the prediction error filter is then

e(k)

p
;0 a(yxk — i)

I

P
x(k) + A;{)&(z’)x(k - i) )
and its Mth-order polyspectrum can be shown to be

Sue(fisfor o0 ) = AS) -+ ACfu )
CARA o+ fuoy)

“Sua (s fs )
(10)
The optimum A4 (z) is the one which minimizes the sum of

absolute squares of the Mth-order cumulant function of
e (k) as follows:

Iu(A (@)

S S
ki=—o0

M-1=—

- |CM.e(kl9 kz, T, kM—|)|2

an

which, even for M = 2, seems totally different from the
mean square error E[e (k)] on which the conventional
prediction error filter [6], [14]-[16] is based. Next, let us
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show that for M = 2 minimizing Jy, (/i (2)) is indeed equiv-
alent to minimizingAE[e2 (k)] when x (k) is given by (1).
For M = 2, J,,(A(2)) defined by (11) reduces to

LA@) = % |re®)] (12)
where r,, (k) is the autocorrelation function of e(k). It is
sufficient that J,(A(z)) given by (12) is minimum if
|r, (k)| is minimum for all k. A set of sufficient condi-
tions for | (k) | to be minimum for all k is that r,, (0) =
E[€* (k)] > 0 is minimum and r,, (k) = 0 fork # 0 in the
meantime. It is well known that the conventional pth-or-
der prediction error filter, which minimizes the mean
square error of e(k), is a whitening filter (r,, (k) = 0 for
k # 0) with transfer function equal to A4 (z) [6], [16]. In
other words, minimizing E[e* (k)] is equivalent to mini-
mizing J, (/i (z)) given by (12) because the former requires
that the previous sufficient conditions associated with the
latter be true.

Notice, from (11), that Jy, (A(2)) is not a quadratic func-
tion but a highly nonlinear function of the coefficients of
A(z) if M > 2. Therefore, the optimum A(z) cannot be
obtained by solving a set of linear equations, as was done
with (8) for the conventional prediction error filter. Some
discussion about this is in Section VI.

It is also well known that the conventional prediction
error filter based on the minimization of E[¢” (k)] is min-
imum phase [14], [15]. The corresponding fact associated
with the proposed prediction error filter based on the min-
imization of JM(fi (2)) defined by (11) is described in the
following.

Fact 1: The optimum A(z) associated with Jy, (A (2))
(see (11)) cannot have zeros outside the unit circle (min-
imum phase).

Proof: Assume that A(2) is not minimum phase with
a zero z; outside the unit circle (i.e., |z;| > 1). We can
then express A(z) as

A@) = (1 — 2z HA@) (13)

where A(z) is a (p — 1)th-order polynomial of z~'. Let

B = (1 - (1/z92 HA@). (14)
We need the following equality in the proof:
|1 =z exp {—j2nf}|
= |zl - le_— exp {—j27f}
= lz| - [exp {j2nf} — 1/2|
= |z - |1 = (/) exp {—j2af}]. (15
One can easily see from (13)-(15) that
AN = lz| - |B(HI > |BH|.  (16)
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Next, we infer, from (10), (11), and (16), that
1

1
JM(A(Z)) = So e So |SM,e(f1s T ’fM—l)lz

)

A‘*(f1_+_

1
e SO ISM,x(fb e ’fM—])l2
+ fu-0 | dfi df; -

1 1
> S S |Sux(fis =+ s fu=D I
0 0

CBX(fi + -+ fuo) P df dfs

= Ju(B(R))
which implies that Jy, (A (2)) can never be minimum unless
A(z) is minimum phase without zeros outside the unit
circle. Q.E.D.
Next, let us discuss when the optimum A (2) cannot have
zeros on the unit circle. Assume that z; = pe’>™ in AR

given by (13). Then
[AHI: = g(DIAN (18)
where

g(f)=1—-2pcos @n(f—m) + o> (19
By substituting (18) into the second line of (17),
Ju(A(2)) can be expressed as

1 1
I (A(2) = SO So Gi\(fi, "+ s fu-1)
cGy(fi, - s Sfu-p dfidf - dfy— (20)

i 1
eXP{SO e So In[|Sy..(fi. for - ° " ,fM_1)|L] & - dfy
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dfidfy - - - dfy (by Parseval’s theorem)

AR AL - AUfu-))
c e dfy- (since (10))
BB - B(fu-1)

< dfyy - (since (16))
a7

« + +, fu—, which happens when Sy, (fi, * * * , fu-1) is
a continuous function of f, - - -, fis—. Therefore, the
Jy for A(z) having a zero on the unit circle is never a local
minimum when Sy, (f;, "' , fu-1) is a continuous
function of f;, - - - , fyy—. In other words, we have the
following conclusion

(C1) The optimum A(2) associated with J, (A(2)) can-
not have zeros on the unit circle when x (n) has a contin-
uous Mth-order polyspectrum.

IV. MaxiMuM FLATNESS OF POLYSPECTRA
In this section, we concentrate on the measure of

polyspectral flatness. Let £, (L) denote the flatness of Mth-
order polyspectrum of e (k) defined as

)

23

£.(L) = 1

)

where
Gi(h, " s fu-1)
= |Su(fis - s S0P - TAURD) AR
AU AR+ 0P @D
and
G(fi, * " s fu-0)
=g(f)glf) - 8(fu-1)
cgh+ -+ fuo) (22)

1t is easy to show that dG,/dp > 0 forp > 1, dG,/dp
= 0 for p = 1 and the case of dG,/dp = 0 forp = 1
happens only when f; = gorfy +fo + -+ + fyy_1 = 1.
This implies that dJ,,/dp > 0 for p > 1 which is con-
sistent with Fact 1, and that dJ, /dp > O for p = 1 if
G{(fi, " , fu—1) > 0is a continuous function of fi,

i
T So |SM,e(fl’f2s T 7fM—l)|L dfy +* dfy-

where L is a positive integer. Note that £, (L) is the geo-
metric mean of | Sy . (fi, /o> * * = » fu-1)|" divided by the
arithmetic mean and therefore can be shown to satisfy 0
< ¢,(L) = 1. Note that £, (L) = 1if | Sy .(fi, oo = ° s
fu—1)| equals a constant for all (fi, £, -, fu-1). On
the other hand, £, (L) = O if | Sy .(fi. fos " » fu-1)|
is very peaky. Note that for L = 1 and M= 2, £,(L) is
exactly the same as that associated with the well-known
Gray and Markel’s spectral flatness measure [5], [6]. Now
let us show the following fact associated with the max-
imization of &, (L).

Fact 2: Let Q(L) denote the set of all optimum A@)’s
associated with maximum £,(L). a) If an A@2) € Q(L) has
pzerosatz =2z, ' ', 2 =2, then all D(z)’s e QW)
where D(z) = (1 — ayz™") - -+ (1 — ez”") in which o
=zorl/zf, k=1,2, -, p.b) Maximizing £,(L) is
equivalent to minimizing the following objective function

1

1
jL(f‘i(Z)) = So e So |SM,e(flrf2a v ’fM—])lL df,
s dfy-- (24)
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Proof: Let us prove statement a) and then statement
b). Assume that an A(z) € Q(L) is expressed by (13).
Moreover, assume that x (k) is also the input applied to
the B (2) as given by (14) and p (k) is the corresponding
output B(z). It can be easily shown by (10) and the equal-
ity in (16) that

ISM,E(.f]7_f2’ te ’fM‘-l)’
=F: |SM_u(f17f2, et an—])I (25)
where F = |z;{* is a constant. Therefore, £,(L) = £,(L)

by (23) and (25) which also indicates polyspectral ﬂatness
is the same for any two scale-factor related polyspectra.
Therefore, B(z) is also an optimum solution or B(z) e
Q(L). Thus statement a) is true.

Next, let us prove statement b). The following result is
needed in the proof. If A(z) is minimum phase (6], [16]
with all zeros inside the unit circle, then

1
Sgﬂﬂﬂﬁﬂ=u (26)

The equality (26) also holds when 4 (z) has zeros on the
unit circle. The proof is as follows. Again, assume that

wl]

1
SO In {ISM,x(f)’f27 e
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where we have used a definite integral formula in the last
line of the proof. Next, we have

1 1
50 ce So In Sy (fiofor "o S| df - dfyy
L 1
I | ISt 0P s
0 0
s dfy -y
L 1
= 5 S T 5 ln |SM,x(fl)fZ’ Tt 7fM~l)|2dfl
0 0
L ! .
¥ R R Y %,
0 0
+ o+ I [A(f- )]
+In |A*(f, + “+ fu-0)P} df
~dfy- (since (10))
| 1
= SO T SO In ISM,x(fl’fZ’ Tt 9fM—1)|Ldf1
cdfu_ (since (26)) X))

which is not a function of 4 (z). Substituting (27) into (23)
provides

an—1)|L} dfy - dfM—l}

£ = T

0

A@) is expressed by (13) where z; = pe’?™ and all the
zeros of A(z) are inside the unit circle. Then substituting
(18) into the integral given by (26) for p = 1 gives rise
to

1
&MMGWW

1

ﬁmﬂﬁ#+&

In [A(f)|* df

(since all zeros of A (4]
are inside the unit circle)

1

|, menar
1/249q
S—l/2+n

(since g (f) has a period of 1)

In 2{1 — cos Qn (f — )] df

1 m
ln2+—S In (1 — cos y) dy
T Jo

1
In2+ —(-=7ln2)=0
T

1
) S ISM,e(fl:fZa
0

(28)

,fM—l)‘Ldfl Crdfy
Thus, maximizing £, (L) is equivalent to minimizing the
denominator of £, (L) which is identical with the objective
functlon Jr (A (2)). The assumption of minimum-phase
A(2) in the proof is not restrictive by statement a).
Q.E.D.
Remark that J; (4 (z)) given by (24) forL = 1tand M =
2 reduces to J, (A(z)) = r,.(0) = E[ (k)] (by Parseval’s
theorem) with which the conventional prediction error fil-
ter is associated. Furthermore, one may ask if the opti-
mum A(z) associated with the objective function
J, (A (2)) is identical with the proposed HOS based predlc-
tlon error filter associated with (11). Letting L = 2 in
Jy A (2)) yields

1 1
LAR) = So s So [Su.e(fis oo " s fu-0) |2
cdfy o dfyo, = klgw Ce kM_;:;_m
’ ICM,e (kl’ k29 T, kM—l)|2
(by Parseval’s theorem)
= Jy(A2). (29)

Hence, we have shown Fact 3 described as follows:
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Fact 3: The A(z) € Q(L) (defined in Fact 2) with min-
imum phase for L = 2 is identical with the HOS based
prediction error filter (also minimum phase) associated
with Jy,(4 (2)). Hence, the maximum polyspectral flatness
polyspectrum associated with the minimum-phase 4 (z) for
L = 2 is the same as the linear prediction polyspectrum.

By Fact 3 and (C1) we also have the following conclu-
sion.

(C2) The A (z) € Q(L) (defined in Fact 2) with minimum
phase for L = 2 cannot have zeros on the unit circle when
x (k) has a continuous polyspectrum.

Next, let us show the following fact.

Fact 4: The A(z) € Q(L) (defined in Fact 2) with min-
imum phase is identical with A(z) when x (k) is given by
(1).

Proof: Let us solve for the optimum A (z) with min-
imum phase by letting £,(L) = 1 (maximum value of
£.(L)) which requires

lSM,e(flvfb w0
= Suxlfis for - -0 | AR - 1AH)
NAUSfu-D| AR+ + -+ fus)]
(since (10))
= ] - ’A(f] ’ ’A(f» . lfi(fM_l)
A 1AH) A(fu-0
Ly L

G’ for all (fl’fZ’ U 7fM—I) (30)

where G is a constant. Note that both A (z) and 4 (z) are
minimum phasc by assumption. Therefore, the rational
function 4(z) /A (z), which is also minimum phase, never
forms an all-pass filter which is nonminimum phase [34].
Thus, we conclude, from (30) that

A@R)/A@R) = 31)

where G’ is also a constant. Since a(0) = a(0) = 1, the
constant G’ can only take the value of unity. In other
words, A(z) = 4 (2). The proof is thus completed.

Q.E.D.
Furthermore, notice from (30) and (31) that
Sue(fis * 0 s fu-1) = Tu
or
Cuelkr, == - s ky—1) =y 6(ky) « -+ d(kp—y)
where 6 (k) is the discrete delta function (6(k) = 1 for k

= 0, 6(k) = 0 for k& # 0). Therefore, both the linear
prediction polyspectral estimator and the maximum
polyspectral flatness polyspectral estimator perform as an
‘‘Mth-order whitening filter,”” which suggests that 4,, be
estimated as the sample cumulant éM,e(kl =0, -,
kp—1 = 0) when the number of data is finite. Remark that
the conventional prediction error filter is known as a sec-
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ond-order whitening filter whose output is an uncorrelated
process but not an independent process except for the
Gaussian case. Similarly, the non-Gaussian output of an
Mth-order (M = 3) whitening filter can be viewed as an
““‘Mth-order uncorrelated’’ process which is not an inde-
pendent process either except that x (k) is given by (1)
where u (k) is i.i.d. Next, let us present the criterion of
maximum higher order entropy.

V. MaxiMuM HiGHER ORDER ENTROPY

We define the Mth-order entropy, denoted I‘(SM o), of
the polyspectrum SMX( fi» o S fu—) of x(k), as

5fM—])|2 d.fl

(32)

1 1
I‘(sM‘x) = % SO te SO In 'gM,x(fl’ tr

“dfy-

The maximum Mth-order entropy polyspectrum of x (k) is
the one which maximizes I' (S, ,) given (32) subject to the
constraint

éM,x(kl: L kyo) = CMx(kI; CT

V(k],"'

kM— I)
) kM— ]) € RM,p
(33)

where Ry, ,, which was defined in Section II, is the do-
main of support associated with the Mth-order cumulant
function of any non-Gaussian MA process of order p, and
CMx(kl’ v kM ]) for(kl, M kM 1)GRMparethe
known samples of cumulant functlon CM cCkyy e ko)
associated with SM‘X( fi» ** s fu—1). In other words, the
maximum Mth-order entropy polyspectral estimator as-
sumes that the Mth-order cumulant function for (k;, - - -,

-1) € Ry, is known exactly and attempts to extrapolate
the Mth-order cumulant function for (k;, - - - , ky_ ) &
Ry p.- Thus, the maximum Mth-order entropy
polyspectral estimator bypasses the problems that arise
from the use of window functions, a feature that is com-
mon to all Fourier-based methods of polyspectrum anal-
ysis.

It is worthwhile to remark that unlike the ‘‘entropy”’
[3] which indicates the randomness of a time series, we
do not have any definite physical interpretation for the
‘‘Mth-order entropy’’ defined by (32). Moreover, for M
=2, I‘(S‘M,X) reduces to

(X3

1

P ulf) = SO In $..() df (34)
which is proportional to the entropy rate associated with
the well-known Burg’s maximum entropy spectral esti-
mator [1]-[4], where S, (f) denotes a power spectrum
estimate of x (k). We next show the following fact asso-
ciated with T'(S), ).

Fact 5: The maximum Mth-order entropy polyspec-
trum .SA'M'X(f,, **+, fu-1) can be expressed as (40) be-
low.
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Proof: Let
L=T@u)~ 22 Nk, kyo)
ki, s+ kM-1)ERM.p
' {CMJ(k]s T, kM*l)
— Cyelky, = oo, kM—l)} (35)
where N(k, - - -, ky ) is the Lagrange multiplier. Note
that A(ky, - - -, ky_ ) is real since Cy, (ky, =+ * , kpr—y)

is real. Taking partial derivative of £ given by (35) with
respect to Cy . (ky, * * * , ky— ) and then setting the result
to zero yields

1 Sl Sl [e~121r(ﬁkl+"'+fM1kM1)
2 02 2 SuxCfis 0 s fu-)

o 2K+ + fog— kag - )
RIS ,fM_.)}df' e
Nkp, = c ko), (K, ot L kyo ) € Ry
- {0 otherwise.
(36)
Let us define Ak, ky, " - -, ky_ ) to be
Aky, kyy w e k)
_ {)\(_kl, Ty —kyoy), (ko ko) € Ry,
0  otherwise.
(37)

Note that the domain of support associated with A (k,, k,,
“* *, ky—1) is the same as that (i.e. Ry ;) associated with
Nk, ky, + -, ky_,) since Ry, is symmetric with re-
spect to the 0{igin. It can be easily shown from (36) and
(37) that 1/8y (fi, -, fu— and Ak, ky, * - -,
ky 1) form an (M — 1)-dimensional Fourier transform
pair, i.e.,

1
SM,x(ﬁs Tt ’fM—l)
= D e Ak, -

ki, -+ - Jkm - 1)€RM.p

wexp {—R27(fiky + - + fyu_iky-D} (38)

where A(ky, kp, =+ -, ky_,) also satisfies all the sym-
metry properties of the Mth-order cumulant function since
Sy (fis -+ * . fu-)) is a polyspectrum of a non-Gaussian
linear process by assumption. Moreover, one can see from
(38), that 1 /Sy (fi, - -, fu—1) can be viewed as the
Mth-order polyspectrum of a non-Gaussian MA process
of order p and therefore can be factored as the product

1
S‘va(fh L fu-)
= D . Ak, - -

(ki r - kM- 1)€RM,p

C k)

. 7kM—])

cexp {27 (fiky + -+ fu_ky-)} (39)
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where A(f) = A(z = exp {j2xf}) and A (2) is a pth-order
polynomial of z™', or

1 1
Suxlfi o0 s fu-) = ,\?M/i(fl) AU

1
'/‘i\*(fl'*_".

. (40
F o @9

Q.E.D.

By substituting (40) back into (32), the Mth-order en-
tropy I' (S, ,) can be no further expressed as

1 1
F(SM,x) =In[fy| — % So T So In If‘i(fn) I‘i(fz)

o A(fy-)  ARR+
’ "‘fM—l)‘2 dfl v dfM—1~

Let P(Ry, ) be the set of all possible (Y, A(2))’s that
satisfy (33). By Fact 5, solving for the maximum Mth-
order entropy polyspectrum is equivalent to finding
P(Ry ,) and then substituting (fyM, A@2) of P(Ry,p) into
(41) to find the optimum (%, A(2)) as well as the maxi-
mum I:(S'M‘X). Therefore, if P (Ry,,,) contains only a single
(¥m, A(2)), it must be the optimum solution no matter
whether the optimum A (z) is minimum phase or not, al-
though when M = 2, the optimum A (z) associated with
Burg’s maximum entropy spectrum is minimum phase.
Obviously, the constraint given by (33) is satisfied for
/i(z) = A(z) when x (k) is given by (1). Hence the follow-
ing fact is true.

Fact 6: Sy (fis = s fu-0) = Sux(fis =0 s fu-y)
(see (5)) is a maximum Mth-order entropy polyspectrum
when x (k) is given by (1) where A(z) is minimum phase.
Therefore, if the solution A(z) = A(z) is unique, the op-
timum

SwcCfis = s fu-1) = Sl fis = fu)

is unique. However, as mentioned in Section II, it is still
unknown whether the solution 4 (z) = A (z) under the con-
straint given by (33) is unique although this is true for the
case of M = 2. Furthermore, Facts 3 through 6 imply the
following fact.

Fact 7: The linear prediction polyspectral estimator
and the maximum polyspectral flatness polyspectral esti-
mator associated with the minimum phase A(z) € Q(L) for
L = 2 are also a maximum Mth-order entropy polyspec-
tral estimator when x (k) is given by (1) where A(z) is
minimum phase.

As a final remark, the sampling points associated with
known cumulant samples are not necessarily limited to the
finite region Ry, , as in (33). The resultant maximum Mth-
order entropy polyspectral estimator can also extrapolate
or interpolate the cumulant function for the other points.
However, solving for the maximum Mth-order entropy
polyspectrum becomes a quite difficult nonlinear optimi-
zation problem.

(41
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VI. DiscussioN AND CONCLUSIONS

In the paper, we first presented a new prediction error
filter based on HOS (see (11)) of a stationary non-
Gaussian linear process x (k). Then we defined the mea-
sure of maximum flatness of polyspectra (see (23)) and
the criterion of maximum Mth-order entropy (see (32)).
We have shown that when x (k) is given by (1) and the
order p is known a priori, the proposed HOS based pre-
diction error criterion, maximum flatness measure of
polyspectrum, and maximum Mth-order entropy criterion
are associated with the same AR parameters which are
identical with the true AR parameters. These results are
summarized in Facts 1 through 7 in the previous sections.
Besides, Fact 8 is to be given later in this section. We
also showed that these results for which the order M of
cumulant function is set to two reduce to the correspond-
ing results associated with second-order statistics (power
spectra) but it is still an open question whether or not the
solution of maximum Mth-order entropy polyspectrum is
unique. However, when the order p of the AR process of
interest is not known in advance, the proposed HOS based
prediction error filter A(z) is then no longer identical with
the true A(z) when the order p of A(z) is less than p, and
thus the prediction error is not Mth-order white any more
for this case. On the other hand, if p = p, then a(i) =
a@)forl =i <panda@ =0fori > p.

We would like to mention that Facts 1-3 and 5 are valid
even when x (k) is a noncausal AR process where A(z) is
nonminimum phase since the previous proofs for these
four facts only require x (k) to be a real stationary non-
Gaussian linear process, and that Fact 5 can also be proven
for the case of complex Cy ((ky, ky, -, ky—y) al-
though the previous maximum Mth-order entropy poly-
spectrum was defined for real Cy ((ky, ko, * - -, ky—1).
A remark associated with Fact 7 is as follows. It is not
yet known if the linear prediction polyspectral estimator
and the maximum polyspectral flatness polyspectral esti-
mator are still a maximum higher-order entropy polyspec-
tral estimator or not when x (k) is not an AR process.

Next, let us discuss the phase sensitivity of the previous
linear prediction polyspectral flatness polyspectral esti-
mator, and maximum Mth-order entropy polyspectral es-
timator. Assume that y (k) is the output of an all-pass filter
with the input being x(k), then an identical maximum
polyspectral flatness polyspectrum will be obtained using
eltherx (k) or y (k) (because the all-pass factor in | Sy . (fi,

, fu—1)| disappears, thereby resulting in the same
Ee(L) (see (23)). By Fact 3, the linear prediction poly-
spectrum associated with y (k) is also the same as that as-
sociated with x (k). In other words, these two polyspectral
estimators try to flatten polyspectra of x (k) only in am-
plitude. Hence the following fact is true.

Fact 8: Both the linear prediction polyspectral esti-
mator and the maximum polyspectral flatness polyspectral
estimator are all-pass factor blind.

Corresponding to Fact 8 for M = 2 is the well-known fact
that all power spectral estimators are all-pass factor blind.
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On the other hand, the maximum Mth-order entropy
polyspectral estimator can be phase-sensitive due to the
reasons as follows. Let P, (Ryy, ) : associated with I‘(SM o
and P, (R, ,) associated with I‘(SM ,) denote the solution
set P(RM » of (Yu, A(2))’s that satisfy (33) (defined in
Section V). Because cumulant function is phase sensitive,
one can easily infer that

Custki ko, * v 5 k1) # Cu ki, by =00 5 k)

for (k,, ky, * ** » kyy—1) € Ry,p. Therefore, P (Ry p) is
totally different from P,(Ry,,) which implies that the
maximum Mth-order entropy polyspectral estimator is
phase sensitive.

Notice from (11) that solving for the proposed predic-
tion error coefficients by minimizing (11) becomes a non-
linear optimization problem because the closed form so-
lution does not seem to exist. Let us check an internal
consistency that A(z) = A(2) should be a local minimum
of JM(/i (2)) when x (k) is given by (1) since the optimum
A(z) has been shown to be identical with A(z) in the pre-
vious sections.

For simplicity, let M = 3. Note that e(k) = u(k) as
A@z) = A(@). Thus

C3,e(k1’ ky) = C3,u(kl7 k) = v - 8 (ky) + 6(ky).

Moreover, it can be easily seen from (1) that as AR) =
A2),

(42)

Ele(k) x(k — kp) x(k — ky)]
= Efu(k) x(k — k) x(k — kp)]

=0, ifky >0ork, >0 43)
and
Ele* (k) x(k — k)] = E[u’ (k) x(k = k)] = y3h(—k))
B {%, ky =0
“lo, ifk > 0. 44
Let x (k) = (x(k), x(k - 1), - ,x(k — p + 1))'. Tak-

ing partial denvatlve of Js (A (z)) (see (11)) with respect
toa = @), a@), , a(p))' yields

8% 2 3 % Cubak)
08 ljm=-ae k= -0 kp= -
L0Gs ki, k)
da iw=40
=2y 96..0,0) C3’2€0’ 9 (since (42))
da i
A=A

= 6v;E[e* ()x(k — 1)]

AR =4

=0 (since (44)) (45)

which implies AR = A@) is either a local minimum or
a local maximum of J3 (A(2)). Furthermore, we obtain
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from (45)

3Js PSS {acz,(,(kl, k2>}{ac3,e(k1, kz)},

3 | _ s k= o k=~ da da PN
d ol 3*Cy (ky, K
+ 2 Z Z C3.e(kla kZ){_W}
ki=—o0 k= —oo da i =A@

L, sy {a Celh, kg}{acs,e(lf], kz)}

ki= -0 ko= —oo da da i =A@

+ 2y3{Ele) x(k — ) x'(k — D]}

(since (42))

AR =40
> o 3 k !
=2 Z Z aCle(’flv kZ) { C3VE(AI’ kZ)} (since (43)) (46)
ki=—0 ky=—oo da da A =A@
which is obviously nonnegative definite. Furthermore, (46) implies that
8%J e (a '
2, ., 5 { €0, kz)}{acz.eq), kz)} ‘ @
L FIR k=1 da da i@ =40
Moreover,
3C; (0, k
M = 2E[e(k) etk + k) x(k — 1)] + E[ez(k) xtk + k, — 1)]
da i@ =40 i@ =A@
= Y304, forl <k <p (since (43) and (44)) (48)
where
Vo=thtk -1, - RO =1, --,0) 49 ACKNOWLEDGMENT

whose k,th component is equal to one and the last ( p -
ky) components are equal to zero. We conclude from 47)
and (48) that

v,

p
2
. = 273 Z_: vkzvéz
AR =A@) k=1

whose right-hand side is obviously positive definite since
v, vy, -+, v,] forms a basis qf the p-dimensional Eu-
clidean space. In other words, A(z) = A(z) is indeed a
local minimum of J; (4 (z)).

Although many existing cumulant based AR parameter
estimators are based on fitting (7) with sample cumulants
computed from finite data, currently, we are investigating
the solution of AR coefficients based on (11) instead of
(7). The results will be reported in a separate paper. On
the other hand, many well-known order determination
methods are based on the conventional minimum mean-
square prediction error such as the final prediction error
(FPE) [35], Akaike information criterion (AIC) [36], and
the criterion autoregressive transfer function (CAT) [37].
We are also investigating some new order determination
methods based on the proposed HOS based prediction er-
ror. We believe that the results presented in this paper
provide a theoretical background on the polyspectral es-
timation and modeling of non-Gaussian AR processes.

The research described in this paper was performed at
the Department of Electrical Engineering, National Tsing
Hua University, Hsinchu, Taiwan, Republic of China.
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